Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0613820160260030353
Journal of Life Science
2016 Volume.26 No. 3 p.353 ~ p.358
Crystal Structure of Thiolase from Clostridium butyricum
Kim Eun-Jung

Kim Kyung-Jin
Abstract
Thiolase is an enzyme that catalyzes condensation reactions between two acetyl-CoA molecules to produce acetoacetyl-CoA. As thiolase catalyzes is the first reaction in the production of n-butanol, knowledge of the molecular and regulatory mechanism of the enzyme is crucial for synthesizing high-value biofuel. Thiolase from Clostridium butyricum (CbTHL) was expressed, purified, and crystallized. X-ray diffraction data were collected from the crystals, and the 3-dimentional structure of the enzyme was determined at 2.0 A. The overall structure of thiolase was similar to that of type II biosynthetic thiolases, such as thiolase from C. acetobutylicum (CaTHL). The superposition of this structure with that of CaTHL complexed with CoA revealed the residues that comprise the catalytic and substrate binding sites of CbTHL. The catalytic site of CbTHL contains three conserved residues, Cys88, His349, and Cys379, which may function as a covalent nucleophile, general base, and second nucleophile, respectively. For substrate binding, the way in which CbTHL stabilized the ADP moiety of CoA was unlike that of other thiolases, whereas the stabilization of ¥â-mercaptoethyamine and pantothenic acid moieties of CoA was quite similar to that of other enzymes. The most interesting observation in the CbTHL structure was that the enzyme was regulated through redox-switch modulation, using a reversible disulfide bond.
KEYWORD
Clostridium butyricum, disulfide bond, redox-switch modulation, structure, thiolase
FullTexts / Linksout information
Listed journal information
ÇмúÁøÈïÀç´Ü(KCI)